產品狗運營喵,別告訴我你還不會做“用戶畫像”


          Warning: Invalid argument supplied for foreach() in /data/cxweb/www/gupowang.com/public/article/view.html on line 71
          7年前

          23.png

          來源|互聯網er的早讀課  ID:zaoduke


          作為一只互聯網搬磚狗,如果你還不會做“用戶畫像”,那小編非常建議你好好閱讀下面的文章。


          本文的作者叫項宇,來自網易用戶研究部門,主要對接網易云閱讀和網易漫畫的用戶研究工作。


          在網易,用研部門承擔了大多數創新互聯網業務的用戶體驗研究工作。就小編拿到的獨家資料顯示,網易的用研部門主要分為用戶研究和戰略分析兩條線,用戶研究線承擔了網易大多數創新互聯網業務的用戶研究工作,目前主要服務于音樂、教育、社交、智能硬件、閱讀等十多款互聯網產品。


          1.webp.jpg



          用戶研究方法主要分為兩個大類:定性研究與定量研究。定性研究方法中經常用到的有:深度訪談、觀察法、可用性測試等,在定量研究中主要用到問卷調研、流量/日志數據分析、實驗法等,通過系統的方法論保證研究結論的有效性。


          2.webp.jpg


          今天著重要說的,是“用戶畫像”。所謂用戶畫像,就是一種目標用戶的人物原型,它不僅可以快速了解用戶的基本信息并快速歸類,還可以進一步精準地分析用戶行為習慣和態度偏好。用戶畫像雖然是用戶的虛擬代表,但必須基于的是真實用戶和真實數據。


          一、明確研究目的


          我們嘗試去做一個用戶畫像,往往是基于以下情景:


          1. 確定目標用戶,將用戶根據不同特征劃分不同類型,確定目標用戶的比例和特征;

          2. 統計用戶數據,獲得用戶的操作行為、情感偏好以及人口學等信息;

          3. 根據目標用戶確定產品發展相關優先級,在設計和運營中將焦點聚焦于目標用戶的使用動機與行為操作;

          4. 方便設計與運營,據用戶畫像提供的具體的人物形象進行產品設計和運營活動,也比僅有模糊的、虛構的、或是有個人偏好的用戶形象更為方便和可靠;

          5. 根據不同類型用戶構建智能推薦系統,比如個性化推薦,精準運營等等。



          從用戶畫像的使用情境也可以看出,用戶畫像適用于各個產品周期:從潛在用戶挖掘到新用戶引流,再到老用戶的培養與流失用戶的回流,用戶畫像都有用武之地。


          3.webp.jpg


          二、明確研究方法


          采用定性的方法(如,深度訪談、焦點小組)或定量的方法(如,定量問卷、行為日志數據)都能夠完成用戶畫像的構建,不同的方法各有優缺點:


          4.webp.jpg


          但是,不論是選擇定性還是定量的方法,都首先需要對用戶類型有一個基本“量”的了解,否則在選用樣本時就會產生偏差。那么如何通過定量的方法(聚類)構建用戶畫像呢?


          三、確定目標維度和數據


          3.1 選擇哪些指標?


          用戶指標的選擇,可以是封閉性的,也可以是開放性的。


          在封閉的指標中,用戶群的類型是固定的,所有用戶類型構成了全部的用戶整體,比如輕度用戶、重度用戶;男性用戶,女性用戶。但是這種劃分方式維度可能過于單一,無法體現用戶群的復雜性,并且不利于指標體系的補充改進和迭代。因此在研究中我們更傾向于采用開放性的分類方式,可以根據不同應用場景變更或者拓展指標。


          開放式的指標體系包括用戶人口屬性、行為操作屬性、態度偏好屬性、用戶價值屬性等,用戶的行為和態度是不斷變化的。


          5.webp.jpg


          其中,注意一點,封閉式指標中的人口屬性指標是相對穩定的靜態數據。通常,從我們的經驗和掌握到的用戶信息,我們對用戶的年齡結構、性別比例都已經明確,如果在聚類中人口屬性指標對聚類干擾較大(共線性較強),或在模型中作為因子影響過高,可以在聚類時重點關注用戶的行為操作和態度偏好等指標,聚類成功之后再比較每一種用戶類型的人口學背景信息等。


          3.2 如何獲得和篩選數據?


          在確定指標后,我們需要確定指標的來源。有些數據是后臺行為日志可以記錄到的,有些是需要用問卷調查的。一般而言,行為層面的指標可以用后臺日志,更加準確。而態度層面的則要用問卷來獲取。兩種數據渠道各有優缺點:


          6.webp.jpg


          理論上,所有的數據都可以通過問卷獲得。但是,為了最優化研究效果,我們采取了問卷+行為日志結合的方式。在發問卷的同時,抓取了用戶的設備號和ID,以匹配后臺數據。


          在保證問卷效度的前提下,問卷設計還需要注意結合用戶特征,以提高填答率以及數據準確率。比如,針對二次元用戶,在用戶群年齡結構偏小的前提下問卷不能太長,不能出現深奧的專業術語;同時問卷的語句表達以及頁面風格也要相應調整,使其沒有距離感。同時,注意篩除多次填答和注冊的馬甲賬號問卷。此外還要注意新用戶的占比,需要評估填答問卷中新注冊用戶的比例是否與投放期新用戶正常增量一致。用戶畫像是否需要包含新用戶取決于項目目的,也可以和產品方討論后決定。


          四、嘗試與評估用戶聚類


          4.1 把用戶分成幾種類型?


          聚類分析是探索性的研究,他根據指標或者變量之間的距離判斷親疏關系,將相似性的聚為一類,因此會出現多個可能的解,并不會給出一個最優的解,最終選擇哪一種方案是取決于研究者的分析判斷。


          把用戶分的類型越少,顆粒度就越粗,每種類型之間的特征就不會很分明;用戶類型越多,顆粒度也就越細,但復雜的類型劃分也會給產品定位和運營推廣帶來負擔。因此,細化顆粒度不僅需要定量的聚類來調整,還需要結合產品經驗來驗證。同時,因為采用的是開放性的指標體系,我們不可能像區分“男性用戶、女性用戶”那樣清楚地知道用戶類型的數量,因此,在用數據進行用戶畫像時,最關鍵的一步就是確定把用戶分成幾種類型。


          4.2 如何選擇合適的聚類方法?


          在確定因子之后需要選擇合適的聚類方法。不同方法適用的情況不同,常用的是K均值聚類以及層次聚類。


          K均值聚類也稱快速聚類,內存少,復雜程度低,快速高效,適用大數據量。但是需要提前明確分類數目,并對均值進行定義。只能對樣本聚類,不能對變量聚類,樣本的變量需是連續性變量。


          層次聚類可以對變量聚類,也可以對樣本聚類,可以是連續變量也可以是分類變量。能提供多種計算距離的方法,但是計算復雜度高,適用小數據量,我們需要結合項目的具體情況,包括項目周期、數據形式、數據量、聚類特征等等來確定聚類方法。



          61.webp.jpg


          最后通過嘗試不同的聚類數、距離算法和分類方法,我們可以根據以下幾點來確定分類的數量:


          1. 依據產品經驗,不同產品的典型用戶不同

          2. 根據已有的用戶研究以及相關研究結論

          3. 根據具體的分類效果確定    

          4. 根據層次聚類“步數——距離”拐點   

          21.webp.jpg


          聚類效果好壞的評估可以從聚類中心之間的距離、組件與組內的方差以及群組數量之間的比例是否符合產品特征、比例是否協調以及劃分的類型對產品是否有意義等方面去評估。


          五、把數據還原成用戶


          在已經得知了分類結果并且分析得出了每一類用戶在各項指標上的特征之后,構建用戶畫像的工作也就好比在一副骨架上填充血肉。一方面,我們可以直接利用獲取的數據,找到具有顯著特征的信息,賦予到用戶身上。比如第一類用戶60%使用iOS系統,而其他三類均不超過20%,我們就可以將第一類用戶抽象為一個平時使用iPhone 的人。除了問卷數據之外,想要使人物形象更加鮮明,可以對問卷本文題進行分析,或者根據產品經驗、用戶反饋或已有研究進行畫像,這樣可以使用戶形象更加有血有肉。


          但是,把數據還原成用戶本身用戶也需要遵循幾個原則,畫像(Persona)意味著一個令人信服的用戶角色要滿足七個條件:


          P 代表基本性(Primary research)指該用戶角色是否基于對真實用戶的情景訪談。


          E 代表移情性(Empathy)指用戶角色中包含姓名、照片和產品相關的描述,該用戶角色是否引同理心。


          R 代表真實性(Realistic)指對那些每天與顧客打交道的人來說,用戶角色是否看起來像真實人物。


          S 代表獨特性(Singular)每個用戶是否是獨特的,彼此很少有相似性。


          O 代表目標性(Objectives)該用戶角色是否包含與產品相關的高層次目標,是否包含關鍵詞來描述該目標。


          N 代表數量(Number)用戶角色的數量是否足夠少,以便設計團隊能記住每個用戶角色的姓名,以及其中的一個主要用戶角色。


          A 代表應用性(Applicable)設計團隊是否能使用用戶角色作為一種實用工具進行設計決策


          注:Persona原則來源于Alan Cooper,https://plus.google.com/101097598357299353681/about


          通過定量化的調研可以快速對用戶建立一個精準的認識,對不同數量、不同特征的用戶進行比較統計分析,在后期產品迭代改進的過程中可以將用戶進行優先級排序,著重關注核心的、規模大的用戶。但是,依靠數據這種偏定量的方式建立的用戶畫像依然是粗線條的,難以描述典型用戶的生活情景、使用場景,難以挖掘用戶情感傾向和行為操作背后的原因和深層次動機。因此,如果有足夠精力和時間,后續可以對每類用戶進行深入的訪談,將定量和定性的方法結合起來,建立的用戶畫像會更為精準和生動。


          【相關閱讀】

          用戶運營丨和用戶談戀愛之最實用的操作手冊 

          長篇干貨丨如何用數據分析,搞定互聯網運營的用戶定位和內容初始化? 

          用戶運營丨如何讓用戶愛上消息推送 

          重磅推薦|史上最全用戶成長體系分析,附6大案例 

          思路+步驟+方法,三步教你如何快速構建用戶畫像? 


          姑婆那些事兒推廣服務 點擊 :http://www.3377on.com/news/4585.html

          大家都愛搜:ASM 互聯網資訊類類有話說App推廣運營經驗線下推廣活動推薦微信營銷姑婆專題姑婆圈ASO校園推廣地推ASO100渠道刷量校園運營團隊

          姑婆那些事兒(www.3377on.com)是互聯網推廣運營知識分享平臺,關注移動推廣(android,ios)運營,網站推廣運營、校園推廣及互聯網領域最新動態 。歡迎關注我們的微信(gupo520),新浪微博(姑婆那些事兒)。

          版權聲明:本文來源于互聯網,僅作分享學習之用,姑婆那些事兒負責整理推薦。文章僅代表原作者獨立觀點,不代表本平臺運營者觀點與立場。如有版權問題,請聯系姑婆那些事兒—小秘書(微信號:gpxms001)協商解決

           

          收藏

          {{favCount}}

          個人收藏

          投稿請戳這里!投稿
          0

          次分享

          文章評論(0)

          {{ user.nickname }}
          發表評論
          登錄 進行評論
          加載更多 正在加載中... 沒有更多了
          主站蜘蛛池模板: 四虎国产精品永久地址入口| 福利视频一二区| 最新精品亚洲成a人在线观看| 国产精品兄妹在线观看麻豆| 成人av在线一区二区三区| 色135综合网| 校花主动掀开内裤给我玩| k频道国产欧美日韩精品| 热99re久久免费视精品频软件| 欧美黑人粗暴多交高潮水最多| 女人18毛片a级毛片免费| 免费在线观看视频网站| 亚洲色图视频在线观看| 九九精品99久久久香蕉| 黄软件在线观看| 人妻蜜と1~4中文字幕月野定规| 精品一区二区久久久久久久网精| 婷婷六月久久综合丁香可观看| 伸进大胸老师里面挤奶吃奶的频| 你好老叔电影观看免费| 亚洲欧美日韩久久精品第一区| 亚洲综合在线一区二区三区| 香蕉视频在线观看男女| 日本xxxx色视频在线播放| 国产一区二区精品久久岳| 91精品国产综合久久精品| 校花哭着扒开屁股浣肠于柔| 青青国产成人久久激情91麻豆| 快一点使劲c我在线观看| 天天爱天天做天天爽夜夜揉| 亚洲人成亚洲精品| 男女性色大片免费网站| 国产美女一级做a爱视频| 亚洲制服丝袜在线播放| 中文在线√天堂| 欧美人与物videos另类xxxxx| 强挺进小y头的小花苞漫画| 校花小雪和门卫老头阅读合集| 91精品国产免费久久国语麻豆| 亚洲av综合色区无码一区爱av| 波多野结衣的av一区二区三区|